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Water Quadrapole




104.5°

I

1.86 A

LS
]
]
]
]
]
]

3

109.47°

Arrangement for Hydrogen Bonding - Pentamer



Water
Clusters
Dynamically
Form, Break
and Re-form

(Millero 2006)
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tructure or Association of Water

olecules Versus Temperature

nd Affect on Density (Libes 1992)
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Structure of Ice 1h
with water pentamer
highlighted
(Emerson & Hedges
Fig 3.4, page 67)
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Solutes (Particularly
Ions) are Structure
Breakers

# More accurately they form new structures
# Reorient some water molecules

#t Cause new associations

# Modify properties

# Alter much of the Physical Chem.
(Physicochemical Properties)
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TABLE 2.2

Comparison of Pure Water and Seawater Properties
e e e e

, Seawater, Pure
Property 35%o0 S Water
Density, g/cm?, 25°C 1.02412 1.0029
Equivalent conductivity, 25°C, _— —
cm? ohm~! equiv ™! ‘
Specific conductivity, 25°C, 0.0532 —
ohm-' cm~!
Viscosity, 25°C, millipoise 9.02 8.90
Vapor pressure, mm Hg at 17.4 17.34
20°C .
Isothermal compressibility, 46.4 x 10-¢ 50.3 x 10~ Some
0°C, unit vol/atm Properties
Teglpg.ratuze of maximum =352 +3.98 Undergo
ensity, °C - _
Freezing point, °C -1.91 0.00 Dramatic
Surface tension, 25°C, dyne/cm 72.74 71.97 Changes
Velocity of sound, 0°C, m/s 1450 1407
Specific heat, 17.5°C, J g~ '°C-! 3.898 4.182
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Source: From Marine Chemistry, R. A. Horne, copyright © 1969 by

John Wiley & Sons, Inc., New York, p. 57. Reprinted with permission. _



Adding an Ion Like Sodium (Na")
Changes Some

Things in XH

H,0

a TI
Primary ‘$
Solvation

Shell of H,O

Polarity, High
Dielectric
Constant
Result in
Strong
Solvation or
Hydration of
Na" by H,O



Secondary
Solvation
Shell or a
Second
Sphere of
H,O 1s
Bound to
the First



I Normal H,O Structure Exists
Out Here for “Bulk” Water
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Waters of
hydration

(Emerson &

Hedges

Fig 3.6, page 69)
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Hydrated Ion
(Morel 1993)
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For Anions the
Concept 1s
Analogous
Only Reversed
With Respect to
the Orientation
of the H,O
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Concentration Units

# Salts & other solutes dissolved in water must be
specified with respect to their concentration

# Oceanographers generally agree on proper units

# However you will still see every possible unit
under the sun being used

& ppm, ppb, ppt, M, mM, uM, nM, mg/L, ng/L,
ng/L, pg/L, nmol/kg
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Important Points
(see handout posted for last class)

# Use SI units whenever possible

# Chemical Oceanographers should use
mol/kg with a prefix due to compressibility

# You must know whether the unit refers to
solvent alone or solution as a whole
(1.e., molarity vs. molality; ppm as mg/L or
mg/kg)
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CONTINUUM ION-DIPOLE
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Electrostriction
- occurs when adding salt to H,O

# Add 35 g of NaCl to 965 g H,O = 1000g total
# Density - NaCl 2.165 g/cm?; H,O 0.997 g/cm’
# Volumes = 16.2 cm® + 967.9 cm? = 984.1 cm’
# Actual Volume =977.3 cm?

Volume reduced

=
__

35 g NaCl

=
£

=
_

1000 g
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Colligative Properties

# Physicochemical Properties that
vary with number of species in solution
not their chemical nature

# Vapor Pressure Lowering

# Boiling Point Elevation (AT))

# Freezing Point Depression (ATy)

# Osmotic Pressure ()

23
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Vapor Pressure Lowering

Magnitude of vapor pressure (v.p.) lowering can
be expressed 1n terms of solute mole fraction

AP/P°=X  where X =mole fraction (1.e.,

ratio of moles
solute to total moles

P°=v.p. of pure solvent

AP = change 1n v.p. 2s




Boiling Point Elevation

Boiling point (b.p.) of solution changes

AT, =v K, m where m=molality
K, = constant for solvent

0.512 °C/m for H,O
Tons/molecule - v =van’t Hoff factor

AT, = change n b.p.

26




Freezing Point Depression

Freezing point (m.p.) of solution changes

AT;=-vKi;m where m = molality
K= constant for solvent
1.86 = °C/m for H,O

V = van’t Hoff factor
AT, = change in m.p.
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Osmotic Pressure ()
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Nollet (1748) used pig bladder membrane (Pilson, 1998)




Osmotic Pressure ()

From the Gas Law (PV =nRT)

aV=vRT where T = absolute temp.
R = gas constant
v = van’t Hoff factor

V = volume

7T = osmotic pressure
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Important Properties

# Electrostriction influences density,
water structure & mobility of 10ns 1n solution

# It also results 1n pressure effects for solubility

# Freezing Point Depression lowers freezing
point of natural waters especially seawater

® Vapor Pressure Lowering reduces evaporation

# Osmotic Pressure strongly influences
diffusion across biological membranes
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Ton-Ion Interactions

# Many types — non-specific, bonding,
contact, solvent shared, solvent separated

# Non-specific 1.e., long range interactions
and the concepts of 10nic strength, activity
& activity coefficient

# Specific interactions e.g. complexation, 10n
pairing (strong or weak)

# Millero cartoons

http://fig.cox.miami.edu/~lfarmer/MSC215/MSC215.HTM
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http://fig.cox.miami.edu/%7Elfarmer/MSC215/MSC215.HTM
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Non-specific Interaction

#t Electrostatic in nature
i [1mits effectiveness of 1on 1n solution

# Use concept of activity to quantify effect

(activity = effective concentration, accounts for non-ideal behavior)
a. = [i] ¢ Yr(i) where a. = activity of 10on 1
[1]¢ = free 10n conc. (m)

vr(1) = activity coefficient

In short ‘a = [i] y‘ of 1on 1
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Activity of Individual Ion
Influenced by Other Ions

# Ionic Strength of solution

I=05X7’m where I = 1onic strength
/. = charge on 1on
m = molal conc.

(molarity or molinity

‘a iR ‘ can also be used)
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Activity Coefficient ()

# Debye-Huckel Theory 1s starting point

(Primarily for very low ionic strength)

Iny+=-AZ?1°> original D.H.
or
Iny+=-S 19 /(1 + Apal’) extended

Where y+ 1s the mean 10n activity coefficient
Sr, A & A;are constants related to temperature
[ is ionic strength & a is the ion size parameter in A

Z 1s the charge on the 10n .y



Activity Coefficient ()

# Guntelberg Approximation
Iny+=-A Z*[1°°/(1 + I°9)]

Where v+ 1s the mean 10n activity coefficient
A 1s a constant

Useful for

1S 10nIC streng [>0.1

Z. 1s the charge on the 10n
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Activity Coefficient ()

# Davies Equation
Iny+=-AZ>[1°/(1 +1°°)-0.2 1]

Where v+ 1s the mean 10n activity coefficient

A 1s a constant (= 1.17)

I 1s 10nic strength Usetul for

[~0.5

Z. 1s the charge on the 10n
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Activity Coefficient ()

# Bronsted-Guggenheim
Iny+=Inypy +ZBy[j]+2 Z CinlIlk] + ...
j j

Where v+ 1s the mean 10n activity coefficient
Ypy 18 the vy from Debye-Huckel

B;; 18 a virial coetticient for 1on pairs  [Usetul at

C;; 18 a virial coetficient for three 1ions [ 4Ny I
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Activity Coefficient, ¥
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" Mean lonlc Activity Coelficlent at 25°C
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FIGURE 4-2 Activity coefficient as a function of concentration in the solution: (A) ideal
solution for whichY = 1.00 at all concentrations: (B) activity coefficient for Na™ in NaCl
solutions; (C) activity coefficient for Ca* in CaCl, solution.
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FIGURE 4-1 Activity as a function of concentration: (A) ideal solution for which a = C:
(B) Na™ activity in NaCl; (C) Ca’~ activity in CaCl,.
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Putting It All Together

# Calculate 10nic strength from concentrations of
all ions in solution using 1 =0.5X Z* m

# Use Davies Equation to calculate activity

coefficients for all 1ons of interest (Z = 1,2,3,4)
Iny+=-AZ>[1"/1 + 1) - 0.2 1]

# Calculate activity of the 10ns of interest using
their concentrations and activity coefficients

a=|[i]y
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Example: pH of SW

pH 1s defined as the negative
logarithm of the hydrogen ion activity

pH = -log ay,
At a typical 1onic strength of seawater I = 0.7

From Davies Equation H" activity coefficient
Iny=-AZ?[1"/1+1%)-0.21]

IfZ=1& A =1.17 then lny=&y= 0.69
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Example: pH (cont.)

If a typical seawater pH 1s 8.2
Then H* activity is 1 x 1082 or 6.31 x 10°° M
From a = [i]y or a;, = [H" ]y, & calculated y = 0.69
6.31 x 10° M =[H*] x 0.69
[H"]=9.14x 10° M
Activity of H" 1s 31% lower than 1t’s concentration
Effectiveness of H™ 1s 31% lower due to crowding

This phenomenon 1s greater for divalent 1ons 45
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